Approximation Bounds for Quadratic Maximization with Semidefinite Programming Relaxation

نویسندگان

  • Dachuan Xu
  • Shuzhong Zhang
چکیده

In this paper, we consider a class of quadratic maximization problems. One important instance in that class is the famous quadratic maximization formulation of the max-cut problem studied by Goemans and Williamson [6]. Since the problem is NP-hard in general, following Goemans and Williamson, we apply the approximation method based on the semidefinite programming (SDP) relaxation. For a subclass of the problems, including the ones studied by Helmberg [9] and Zhang [23], we show that the SDP relaxation approach yields an approximation solution with the worst-case performance ratio at least α = 0.87856 · · ·. This is a generalization of the results obtained in [6, 9, 23]. In fact, the estimated worst-case performance ratio is dependent on the data of the problem with α being a uniform lower bound. In light of this new bound, we study the original max-cut problem and show that the actual worst-case performance ratio of the SDP relaxation approach (with the triangle inequalities added) is at least α + δd, where δd > 0 is a constant depending on the problem dimension and data. Karloff [10] showed that for any positive ǫ > 0 there is an instance of the max-cut problem such that the SDP relaxation (with triangle inequalities) bound is worse than α+ ǫ. Hence the improvement is in this sense best possible for the Goemans and Williamson type approach to the max-cut problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semidefinite relaxation bounds for bi-quadratic optimization problems with quadratic constraints

This paper studies the relationship between the so-called bi-quadratic optimization problem and its semidefinite programming (SDP) relaxation. It is shown that each r -bound approximation solution of the relaxed bi-linear SDP can be used to generate in randomized polynomial time an O(r)-approximation solution of the original bi-quadratic optimization problem, where the constant in O(r) does not...

متن کامل

Semidefinite Relaxation Bounds for Indefinite Homogeneous Quadratic Optimization

This paper studies the relationship between the optimal value of a homogeneous quadratic optimization problem and that of its Semidefinite Programming (SDP) relaxation. We consider two quadratic optimization models: (1) min{x∗Cx | x∗Akx ≥ 1, k = 0, 1, ...,m, x ∈ Fn} and (2) max{x∗Cx | x∗Akx ≤ 1, k = 0, 1, ..., m, x ∈ Fn}, where F is either the real field R or the complex field C, and Ak, C are ...

متن کامل

Exact Solutions of Some Nonconvex Quadratic Optimization Problems via SDP and SOCP Relaxations

We show that SDP (semidefinite programming) and SOCP (second order cone programming) relaxations provide exact optimal solutions for a class of nonconvex quadratic optimization problems. It is a generalization of the results by S. Zhang for a subclass of quadratic maximization problems that have nonnegative off-diagonal coefficient matrices of objective quadratic functions and diagonal coeffici...

متن کامل

A Low-Dimensional Semidefinite Relaxation for the Quadratic Assignment Problem

The quadratic assignment problem (QAP) is arguably one of the hardest NP-hard discrete optimization problems. Problems of dimension greater than 25 are still considered to be large scale. Current successful solution techniques use branch-and-bound methods, which rely on obtaining strong and inexpensive bounds. In this paper, we introduce a new semidefinite programming (SDP) relaxation for gener...

متن کامل

A Matrix-lifting Semidefinite Relaxation for the Quadratic Assignment Problem

The quadratic assignment problem (QAP ) is arguably one of the hardest of the NP-hard discrete optimization problems. Problems of dimension greater than 20 are considered to be large scale. Current successful solution techniques depend on branch and bound methods. However, it is difficult to get strong and inexpensive bounds. In this paper we introduce a new semidefinite programming (SDP ) rela...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003